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Shock waves being propagated in an isotropic deformed elastic medium are 
studied within the framework of adiabatic, quadratic elasticity theory. A 
system of equations in discontinuities is written down which describes the sho- 
ckwave propagation process from whose solution the velocities of the possible 
shocks are determined, Conditions for the existence of possible shocks are ob- 

tained from the conditions for solvability of the given system, as a function of 

the properties of the medium and the deformed state in front of the surface of 
discontinuities. Some of the results are extended to the case of an arbitrary 
dependence of the elastic potential on the strain tensor invariants. constraints 
on the existence of shocks imposed by the second law of thermodynamics are 

studied. 

An extensive literature (see [l-6], for instance) is devoted to the study of 
the properties of shocks being propagated in a nonlinear elastic medium. 
Shocks in an incompressible elastic medium [l] are studied most. Results have 
been obtained successfuly in the consideration of shocks in a compressible me- 

dium for either constraints imposed on the dependence of the elastic potential 
on the strain tensor invariants [2-41, or on the deformed state ahead of the sh- 

ock [4-61, or by constraining the analysis just to certain kinds of waves [3,5,6]. 
In this paper no other constraints are introduced, except that taken into account 

are the highest nonlinear terms (quadratic elasticity theory) and a full study is 

performed of the properties of shocks in the arbitrary deformed state ahead of 

the surface of discontinuities. 

1. We define an isotropic elastic medium by the elastic potential w = w (II, 

I,, 13)r where I,, Iz, I, are the Almansi strain tensor components. The AlmanSi 

strain tensor components ei j are representable in terms of the displacement vector 

components ui in a rectangular Cartesian coordinate system in the form 

eij = IIs (Ui,j + Uj,i - uk,i”k,j)7 11 = ejj, 12 = eijeji, 
(1.1) 

1, = eijej&i 

The stress tensor components oij are determined by the formulas 

(1.2) 

p/p0 = (1 - 21, t- 21,2 - 21, - 4/3I,3 + 4I,I, - 8/3I3)“2 

where 6kj is the Kronecker symbol, and the ratio between the running density of 
the medium o and the density of the medium in free space p0 is expressed in terms 
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of the strain tensor components by means of the continuity equation. 
Let us couple a moving coordinate system zf fi = 1, 2, 3), to a shock being pco- 

pagated in the elastic medium by directing the x1 axis along the normal to the sur- 
face of discontiuuities. The velocity vector components ui in the moving coordinate 
system ace evaluated according to the formula 

Vi = SU,lGt + (VI - G)Ui,l i- V&i,a (a = 2, 3) (1.3) 

Here G is the velocity of shockwave propagation 6/&t is the delta derivative with 
respect to time [?I. Performing the operation of discontinuity in (1.3) and taking into 
account that the delta-derivative withrespect to time of a continuous function is con- 

tinuous, we obtain 

[UiJ = Ui,j' 1vjJ + (VI- - G&i, iui,jI = ZiSlj, If1 = f’ - f- (1.4) 

The plus and minus signs on the quantities denote that they are evaluated ahead of 
and directly behind the shock, respectively. we shall henceforth omit the plus signs 

at the components of the displacement gradient tensor ut,j since unless stipulated 

otherwise, only componenets of this tensor calculated ahead of the surface of discont- 

inuity will be present everywhere. solving (1.4) for [uj], we find 

Iv21 = *y G ((P1P3 - %,3U3,1) t;l+ (%,3U3,1 -t P3&,1) 21 + 

@@I,3 + w2;3f z3) G3) 

Pl = 1 - u1.1, Pz = 1 - u2,2 (2, 3), 8 = p1p2p3 - 

%,dk 3u3.1 - U2,1U3,2U1,3 - P1”24u3~2 - P2&,3Ua,l - 

Pa%z%l 

Here and henceforth, the system (2.3) will mean that the appropriate unwritten 
relationship is obtained by commutating the subscripts 2 and 3. 

In this case the dynamic ~ompatibi~ty condition for the d~con~nuiti~ (the cond- 

ition of momentum conservation during passage through the shock) can be written in 

the form 

T’ [uiJ/(v,- - G) = bilj, V = p-(v,- - G)2 (1.6) 

If the quantity [UiJ evalued from (1.5), the [(T~~J evaluated according to (1.1) 

and (1.2) where W = W (I,, I,, Is) ace considered known functions in (1.6), then 

for a given state of strain ahead of the surface of discontinuity the relationship (1.6) 

is a system of three euqtions in the four unknowns V, ‘ci. The parameter ir introduced 
in (1.6) characterizes the propagation velocity of the shook. The system (1.6) can be 

investigated if one of the discontinuities zi is assumed known. 

Let us Limit ourselves exclusively to second order terms in the components of the 
displacement gradient tensor in (1.6). To do this, it is sufficient to keep only the 
following terms 
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in the Maclauren series expansion of the function W = W (Jr, jrs, Is) 

The elastic pOtedial(1.7) is sometimes called the Murnaghan potential, A, P 
are the Lam6 i)arameters, 1, m, I2 are ordinarily called the elastic third order mod- 

uli or the Murnaghan coefficients. Substituting (1.7) into (1.2) and limiting ourselves 
to second order infinitesimals in u.~,~ we find 

oij = ?Li?,Jiij + 2p”gj i- (3TtZ - ~“)U~,~~~~j im tU,tYtsGij $ 
2 (I - h - p) U&,$;Uij + (3E - 4p)L’ikV];j, L?ij ‘- ‘13 (Ui,j + Uj,;) 

(1.8) 

If (1.8) is written in d~cont~uiti~ and the result substituted together with (1.5) 
into (1,6), we obtain the following system of three equations in the four unknowns 
v, zi: 

Let us study the possibility of the existence of longitudinal and transverse shocks 
in the elastic medium. 

Setting Z2 = zs = 0 in the initial system of equations (1.91~ we obtain 

V = T, - ml, b, (T, - az,) = k, (2*3) (1.10) 

A longi~d~al shock whose velocity is calculated by the first equality in (1.10) is 
pcesible in an elastic medium if the state of strain ahead of the shock satisfies the last 
conditions of (1.10). Let us note that these conditions .ire satisfied identically if the 
state of strain ahead of the surface of discontinuities is such that 

%z = %l = 0 (2,3) (I. 11) 

The equalities (1.ll)can be considered as sufficient conditions for the existence of 
longitudinal shocks in the medium. 

The transverse shocks a; = 0 are propagated in an elastic medium if the relati- 

onships 
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(b, v - Ic,) z2 + (CIV - s1) rt, 4 x (222 + x32) = 0 

(V - T&2 -I- fc2V - 32) T3 = 0 (273) 

are satisfied. 

(1.12) 

The velocity of the transverse shocks should be evaluated by equating the determ- 

inant of the homogeneous system of the last equations in (1.12) to zero. The first 

equality in (1.12) expresses the condition for the existence of transverse shockwaves. 

It must be noted that transverse shocks are impossible in a medium strained in such a 
way that (1.11) are satisfied. Let (1.11) not be satisfied, but u2,3 = u3,2 = 0, 
then we obtain from the last equations of (1.12) 

vz = T2 (2,3) (1.13) 

The case under consideration is qualitatively no different from the linear case. 
TranSVerSe shocks are possible on which r2 -f 0 but z1 = a3 = 0 or9conversely, 

73 # 0 but z, = r1 = 0. The nonlinearity is only manifest quantitatively in 
the propagation velocity values for theseshock waves. If uz,3 # 0 or ‘3.2 f O, 

then a transvers shock waves on which zz and aa are not zero simultane~sly be comes 

possible. The velocity of this latter wave is determined by the relationship 

w3 + c35‘2 

AS the influence of the nonlinearity diminishes, the velocity of the longitudinal 
shock tends to the value G = ((A -j- 2~ )/ pa)‘is for the velocity of a longitudinal 

shock in linear theory. The velocities of all possible transverse shocks calculated in 

conformity with (l.. 13) and (1.14) tend to the value G = (CL / pop/t for the velocity 
of a transverse shock in the linear case as the influence of the nonlinearities diminishes. 

The equalities (1.11) are sufficient conditions for the existence of longitudinal sh- 

ocks, on the other hand, if (1.11) are satisfied, then transverse shocks are impossible 
in an elastic medium. Let us note that this result carries over even to the case of an 

arbitrary dependence of the elastic potential on the strain tensor invariants. 
Evaluating the stress tensor components from (1. Z), let us note that the dependence 

of oil on n,i,j (i # j) is even, i, e., u,, is independent of the sign of Ui.j (i 
# 1). Therefore, the coefficients of Z22n-1 and r32n-1 in the expression for [uii] in 

(1.6) will contain the factors uj.1 or Uz,j (j # 1). However, the presence of 
terms with ~~2’~ and 2szn , whose coefficients may be independent of the state of 
strain ahead of the surface of discontinuities, is possible. Therefore, the first equation 
from (1.6) does not become an identity on a transverse wave. Thus, transverse waves 
do not exist in an elastic medium if only (1.11) are satisfied ahead of a surface of dis- 
continuity. This latter essentially extends the known result [5] that transverse shocks 
are impossible in an undeformed elastic medium. Analogously to the above, it can be 
shown that (1. Xl) are sufficient conditions for the existence of longitudinal shocks in 
an isotropic elastic space in the case of an arbitrary dependence of the elastic potential 
on the Almansi strain tensory invariants. 
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2. Let us henceforth consider z1 to be known and different from zero. Then 
by evaluating ‘tz and z, from the last equations in (I., 9). and substituting the 
values obtained into the first equation in (1.9)* we obtain the following equation of 

the fifth power in V: 

(V - T, -+- w RI2 (VI -t- XT1 {Rz2 (V) I- Rz2 (V)) - (b,V - (2.1) 
4) RI (V) Rs (V) - (czV - d RI (V) Rz 0’) = 0 

At, (V) - (V - T, + yq) (V - T, + yq) - (c,V - ~2) (c,V - s3) 

Rz (V) = (&V- b) (V- Ts t- YG + (GV - ~3) (hV - k,) (2,3) 

We seek the solution of (2.1) approximately by considering z+,~ and ~j,~ (j # 
I) to be small quantities. Neglecting squares of these quantities in (2.1). we obtain 

(I’ - T, + q) RI2 (V) = 0 (2.2) 

It follows from (2.2) that 

F’,’ = T, - cm, (2.3) 

Substituting (2.3) into (1.9) results in the equalities ‘tz = ~3 = 0 in the same 
approximation. Therefore, the zero approximation for the first root of (2.1) corms - 
ponds to the longitud~al wave studied earlier which is propagated in a medium if it 

is deformed in such a way that (1.11) are satisfied. 

Let ui,j = 0 (i # i) in front of the surface of discontinuity, then we obtain 
from ( 2.2) 

11; = T, - Vl (2,3) G 4) 

If the relationships (1.11) are satisfied, but &,a, ~s,~ or both these components 
of the displacement gradient tensor are different from zero, then we obtain from (2.2) 

V*,3o = [2 (1 - C&J-~ (F & [P - 4 (1 - czcJ (T,T, - (2.5) 
y T,‘c, - y Tg, + yy - w3)1”9 

F = T, + T, - 2yq + czs3 + c3s2 

Therefore, when the state of strain in front of the surface of discontinuity is such 

that ni,j =: 0 (i # j) shocks are possible in the elastic medium on which either 

r1 # 0, ra i; 0 and zs = 0 or r1 # 0, zs += 0 but za = 0. When 

conditions (1.11) are satisfied, and at least one of the component r&s and u3,z 

of the&spl,acementgradient tensor is different from zero, then a shock is possible in 
the elasti medium whose velocity is determined by (2.5). All the components of the 
wave vector are different from zero on this shock, ‘cl =#= 0, Z, # 0, z3 # 0. As 

the infbuence of the non~neariti~ diminishes, the velocities of these latter shocks, 

defined by (2.4) and (2.51, tend to the value {p / P~}*‘~ for the transverse shock vel- 
ocity in linear theory, hence, these shocks will henceforth be called quasi-transverse. 

upon substituting (2.4) and (2.5) into the system (1. Y), we obtain that quasi-tran- 
sverse shockwaves of the kind studied are possible in the medium Only if the following 

relationships are satisfied 
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T22 = (VI0 - V,O) z1 / x , 722 + 232 = (VI0 - v,y z1 / x (2 3) (2.6) , 

It follows from (2.6) that a necessary condition for the existence of quasi-transverse 
shockwaves in an elastic medium whose state of strain satisfies (1.11) will be the re- 
quirement that 

(I? - V:) TV /x > 0 (2,3) (2.7) 

Let 1, m, n be negative. This is valid for materials similar to the incompressible 
(rubber-like) ones since 11 < 0 for incompressible materials, and hence I< 0, 
m < 0, n < 0. (Experiments [8] show that 1, m, n are negative even for metals). 
In this case, the requirement (2.7) becomes 

G < 0 (2.8) 

we note that condition (2.8) also results for positive I, m, &if their orders are less 
than the order of h and p. The inequality (2.8) is the condition for the existence 
of quasi-transverse shocks in the case when the third order elastic moduli are zero. 

In the terminology of plane shocks (2.8) means that quasi-transverse shocks will be 
simultaneously expansion waves. The order of ‘tl on a quasi-transversewave is of a 
second order infinitesimal as compared with zz or 7s. 

bet us turn to seeking the next approximation for the roots of (2.1). We note that 
the first approximation VI(l) for the first root equals zero since V, depends only on 

even powers of Ui,j (i + j). Setting Vi = VI” $_ Vl!2), where VlC2) is a linear 
combination of & (i ;f j) and substituting into (2. l), we find 

v, = V,o + WF2 (ES2 + Es21 + E-l hE2 + fiE3) (2.9) 

ai = biV1’ - ki, fi = c~VI’ - s~V i = 1, 2, 3 

g = (V,o - V,“) (VI0 - V,“) + fafs, Ea = a3 (VI0 - V,o) + 

azf3 (2,3) I 
We call a shock wave whose velocity is determined by (2.9) quasi-longitudinal 

since its velocity tends to the value of the longitudinal shock velocity in linear theory 

of elasticity as the finfluence of the nonlinearity diminishes. 

setting V, = V: + V,(l) (2,3) and substituting into (2. l), we obtain 

we note that the inequality (2.7) and therefore (2.8) as well, have a broader mea- 
ning as conditions for the existence of quasi-transverse shocks, than had been remark- 

ed. It follows from (2.10) that (2.7) is the condition for the existence of quasi- trans- 
verse shocks when conditions (1.11) are not satisfied, i. e. , for an arbitrary state of 
strain ahead of the surface of discontinuity. 

3. A shockwave in an adiabatic elastic medium is an irreversible process. The 
thermodynamic condition of compatibility of the discontinuities, which we write in 
the form [9] 
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A = p+ Iv,+ .- G), Ci ‘=-(T~,* _ Avi+ 

results from the second law of ~ermodynamics upon crossing the surface of d~continuity. 
Let us recall that a corollary of the second law of th~modynami~ for a shock in 

a perfect gas is the known Zemplen theorem that only compression shocks are possible. 
III the case under consideration, it is convenient to use (3.1) written in the following 
form 

(3.2) 

Substituting (1.2), (L5), (1.7) written in discontinuities, and (1.8) evaluated ah- 
ead of the shockwave into (3.2) results in the inequality 

(1 i_ rn -+ n - 3/,h - 31-L) x,3 q 0 (3.3) 

for a quasi-longitudinal,wave when V is defined by (2.9>. 
Terms not higherthan~e cubic in the ~ompon~ts of the displacement gradient 

tensor were kept in obtaining (3.3). The inequality (3.3) is the analog of the Zemplen 
theorem for quasi-l~gitud~al shocks in an elastic medium. It is hence assumed that 
higher orders of the components Ui,j than the third can be neglected. For negative 

I, m, n, which ordinarily correspond to specific materials, as has been noted, we 

obtain from (3.3) 

i. e, , only quasi-longitudinal compression shocks are possible in such media. 
In the case of quasi-~a~ve~esh~kwav~, the inequality (3.2) becomes an iden- 

tity to the accuracy of cubes in z&j , i. e, , energy dissipation on quasi-transverse sh- 

ocks has a higher order than the third. In this case terms with ui,j4 should be taken 

into account in (1.7). However, if a potential in the form (I.. 7) is selected in a spec- 
ific problem, then it should be considered that no quay-tra~ve~e low-intensity shock 

waves exist in the medium, This latter results from (3.2) after substitution therein of 

the relations (2. LO), (1,5), (1.2) and (1. B), (1.7) written in discontinuities . 
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